MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31
Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0620	31

1 (i) sulfur
(ii) iodine
(iii) copper ignore (II)
(iv) calcium
(v) helium
not name of a compound
accept correct symbols

2 (i) chloromethane
cond biggest molecular mass / biggest mass of one mole / its molecules
move slowest / heaviest molecule / highest density
accept atomic mass if correct numerical value given
ignore it is the heaviest (gas) / biggest molecule
accept particles or molecules
not atoms
(ii) carbon dioxide / calcium carbonate
not methane
water
sodium chloride / brine / seawater
(iii) chlorine
not chlorine water
cond light / UV / heat / high temperature if numerical value given about $200^{\circ} \mathrm{C} /$ lead tetraethyl
not warm
(iv) oxygen and nitrogen (in air)
not from fuel, negates mark 1
(react) at high temperatures / lightning / in engine
not combustion or exhaust, negates mark 2
(v) $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
not balanced $=[1]$

3 (a) (i) bubbles / effervescence / hydrogen / gas pushes up / lifts metal
(ii) does not react with acid / zinc and iron react with acid not just unreactive
(b) (i) with copper / first experiment
(ii) copper acts as a catalyst
(c) (i) smaller gradient not rate is slower
(ii) same final volume of hydrogen / same level (on graph)

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0620	31

(d) temperature / heat
increase temperature - reaction faster particles have more energy / particles move faster / particles collide more frequently / more particles have enough energy to react not more excited
accept arguments for a decrease in temperature
powdered
greater surface area
greater collision rate / more particles exposed (to acid)
any two
not concentration / light / catalyst / pressure

4 (a) (i) ethanol
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
propanoic acid
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$
independent marking, no ecf
accept $\mathrm{C}_{2} \mathrm{H}_{5}$
not - HO
(ii) type of compound - salt / sodium carboxylate / alkanoate
not soap / sodium stearate etc
use - soap / cleaning / detergent
(iii) terylene / PET / Dacron / diolen / mylar / crimplene
(b) (i) polyamide / amide / peptide / polypeptide
(ii) correct amide linkage NHCO then CONH cond to mark 1, 2 monomers (different shading in box)
cond continuation (to ONE correct linkage)
OR nylon 6
only one linkage - NHCO
cond only one monomer
cond continuation (to correct linkage)
(iii) use locating agent
measure distance travelled by sample / travelled by solvent front
cond this is $R_{f}=0.5$
for mark 3, either mark 1 or mark 2 must be awarded
accept run a chromatogram of glycine [1]
compare with sample
same position [1] max [2]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0620	31

5 (a) (i) macromolecular / giant covalent / giant atomic
all atoms held in position / in tetrahedral structure / to four other carbon atoms / all strong bonds
(ii) jewellery / drilling / cutting / engraving / cutting edges in scalpels
mark first use offered
(iii) layer structure / sheets
molecules / ions in layers = [0]
layers can slide (over each other)
(iv) lubricant / pencils / electrodes
mark first use offered
(b) (i) 4e between carbon and oxygens

2 non-bonding pairs on both oxygens
cond correct coding - only scored if marks 1 and 2 awarded
ignore O_{2} in atom
(ii) 40 around each Si

2 Si around each O
must refer to diagram not valencies or electron distributions
(iii) SiO_{2} has higher mp or bp
SiO_{2} is a solid, CO_{2} is a gas (at rtp)
(when both are solids) then SiO_{2} is harder
has higher density
SiO_{2} insoluble, CO_{2} soluble
any two, comparison needed

6 (a) rates equal
concentrations do not change / macroscopic properties remain constant
accept amounts do not change
(b) endothermic
cond favoured by high temperatures
(c) (i) move to left
cond bigger volume / more moles etc
do not insist on "gas"
(ii) less yellow solid / more brown liquid
accept yellow to brown / less solid more liquid / goes brown

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0620	31

7 (a) a transition element has more than one oxidation state or valency accept different oxidation states
(b) by removing oxygen concentration of O_{2} decreases prevents the back reaction / equilibrium shifts to right
(c) oxidation number reduced (from (+) 4 to 0)
accept accepts electrons or accepts four electrons
if number given must be 4
(d) low density / lightweight / light
propellers / fittings on ships / inert anodes in electrolysis / hip replacements / ship building / chemical plants / cathodic protection / diving equipment
(e) (i) percentage of oxygen $=31.6 \%$
(ii) calculate the number of moles of atoms for each element
number of moles of $\mathrm{Ti}=31.6 / 48=0.66$
number of moles of $O=31.6 / 16=1.98$ accept 2
both correct for one mark
(iii) the simplest whole number ratio for moles of atoms:
$\mathrm{Fe}: \mathrm{Ti}: \mathrm{O}$
$1 \quad 1 \quad 3$
(iv) formula is $\mathrm{FeTiO}_{3}{\text { accept } \mathrm{TiFeO}_{3}}^{\text {(in }}$
must be whole numbers from (iii) or cancelled numbers from (iii) mark ecf throughout

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0620	31

8 (a) same general formula
same chemical properties
same functional group
physical properties vary in predictable way
common methods of preparation
consecutive members differ by CH_{2}
any two
mark first two
ignore others unless it contradicts a point which has been awarded a mark
(b) (i) $2 \mathrm{HCOOH}+\mathrm{CaCO}_{3} \rightarrow \mathrm{Ca}(\mathrm{HCOO})_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
not balanced $=$ [1]
(ii) zinc + methanoic acid \rightarrow zinc methanoate + hydrogen
[1] for each product
(iii) protected by oxide layer
(c) butanoic acid
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH} / \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH} / \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{OOH}$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
mark ecf to molecular formula

