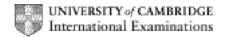
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31


Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Paper

Syllabus

			IGCSE – May/June 2010	0620	31
1	/i\	culfur	1000E – May/oune 2010	0020	
1	` ,	sulfur			[1]
		iodine			[1]
		copper			[1]
•		calcium	1		[1]
	(v)		me of a compound correct symbols		[1]
2	(i)		nethane		[1]
		move s accept ignore	siggest molecular mass / biggest mass of one mole slowest / heaviest molecule / highest density atomic mass if correct numerical value given it is the heaviest (gas) / biggest molecule particles or molecules ims	/ its molecules	[1]
	(ii)	carbon not me	dioxide / calcium carbonate		[1]
		water			[1]
,	, .		chloride / brine / seawater		[1]
((111 <i>)</i>	cond li	orine water ght / UV / heat / high temperature if numerical value / lead tetraethyl	e given about	[1]
((iv)		and nitrogen (in air)		[1]
		(react)	m fuel, negates mark 1 at high temperatures / lightning / in engine nbustion or exhaust, negates mark 2		[1]
	(v)	2O ₃ → not bala	$3O_2$ anced = [1]		[2]
3 (a	a)	(i) bubl	oles / effervescence / hydrogen / gas pushes up / li	fts metal	[1]
	(s not react with <u>acid</u> / zinc and iron react with <u>acid</u> just unreactive		[1]
(b	o)	(i) with	copper / first experiment		[1]
	(ii) copp	per acts as a <u>catalyst</u>		[1]
(c	;)		ller gradient rate is slower		[1]
	(ii) sam	e final volume of hydrogen / same level (on graph)		[1]

Mark Scheme: Teachers' version

Page 2

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0620	31

	(d)	incr fast not acc pov gre- gre-	perature / heat ease temperature – reaction faster particles have more energy / particles move er / particles collide more frequently / more particles have enough energy to react more excited eept arguments for a decrease in temperature vdered eater surface area eater collision rate / more particles exposed (to acid) two	[1] [1]
		•	concentration / light / catalyst / pressure	,
4	(a)	(i)	ethanol CH ₃ -CH ₂ -OH	[1] [1]
			propanoic acid CH_3 - CH_2 - $COOH$ independent marking, no ecf accept C_2H_5 not – HO	[1] [1]
		(ii)	type of compound – salt / sodium carboxylate / alkanoate not soap / sodium stearate etc use – soap / cleaning / detergent	[1] [1]
		(iii)	terylene / PET / Dacron / diolen / mylar / crimplene	[1]
	(b)	(i)	polyamide / amide / peptide / polypeptide	[1]
		(ii)	correct amide linkage NHCO then CONH cond to mark 1, 2 monomers (different shading in box) cond continuation (to ONE correct linkage)	[1] [1] [1]
			OR nylon 6 only one linkage – NHCO cond only one monomer cond continuation (to correct linkage)	[1] [1] [1]
		(iii)	use locating agent measure distance travelled by sample / travelled by solvent front ${\bf cond}$ this is ${\bf R}_f$ = 0.5 for mark 3, either mark 1 or mark 2 must be awarded	[1] [1] [1]
			accept run a chromatogram of glycine [1] compare with sample same position [1] max [2]	

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0620	31

5	(2)	/i\	macromolecular / giant covalent / giant atomic	[1]
J	(a)	(i)	all atoms held in position / in tetrahedral structure / to four other carbon atoms / <u>all</u> strong bonds	[1]
			atoms / <u>an</u> strong bonds	ניו
		(ii)	jewellery / drilling / cutting / engraving / cutting edges in scalpels mark first use offered	[1]
		(iii)	layer structure / sheets	[1]
			molecules / ions in layers = [0] layers can slide (over each other)	[1]
		(iv)	lubricant / pencils / electrodes mark first use offered	[1]
	(b)	(i)	4e between carbon and oxygens	[1]
			2 non-bonding pairs on both oxygens cond correct coding – only scored if marks 1 and 2 awarded	[1] [1]
			ignore O ₂ in atom	
		(ii)	40 around each Si	[1]
			2Si around each O must refer to diagram not valencies or electron distributions	[1]
		(iii)	SiO ₂ has higher mp or bp SiO ₂ is a solid, CO ₂ is a gas (at rtp) (when both are solids) then SiO ₂ is harder has higher density SiO ₂ insoluble, CO ₂ soluble	[2]
			any two , comparison needed	
6	(a)	con	<u>s</u> equal centrations do not change / macroscopic properties remain constant ept amounts do not change	[1] [1]
	(b)		othermic d favoured by high temperatures	[1] [1]
		001	a lavourou by high temperatures	ניו
	(c)	(i)	move to left cond bigger volume / more moles etc do not insist on "gas"	[1] [1]
		(ii)	less yellow solid / more brown liquid accept yellow to brown / less solid more liquid / goes brown	[1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0620	31

7

(a)		ansition element has more than one oxidation state or valency cept different oxidation states	[1]
(b)	-	removing oxygen concentration of O_2 decreases vents the back reaction / equilibrium shifts to right	[1] [1]
(c)	acc	dation number reduced (from (+) 4 to 0) cept accepts electrons or accepts four electrons umber given must be 4	[1]
(d)	pro	density / lightweight / light pellers / fittings on ships / inert anodes in electrolysis / hip replacements / o building / chemical plants / cathodic protection / diving equipment	[1] [1]
(e)	(i)	percentage of oxygen = 31.6%	[1]
	(ii)	calculate the number of moles of atoms for each element	
		number of moles of Ti = 31.6/48 = 0.66	
		number of moles of O = 31.6/16 = 1.98 accept 2 both correct for one mark	[1]
	(iii)	the simplest whole number ratio for moles of atoms:	
		Fe : Ti : O 1 1 3	[1]
	(iv)	formula is FeTiO ₃ accept TiFeO ₃ must be whole numbers from (iii) or cancelled numbers from (iii) mark ecf throughout	[1]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0620	31

8

(a) same general formula same chemical properties same functional group physical properties vary in predictable way common methods of preparation consecutive members differ by CH₂ [2] any two mark first two ignore others unless it contradicts a point which has been awarded a mark (b) (i) $2HCOOH + CaCO_3 \rightarrow Ca(HCOO)_2 + CO_2 + H_2O$ [2] not balanced = [1] (ii) zinc + methanoic acid → zinc methanoate + hydrogen [2] [1] for each product [1] (iii) protected by oxide layer (c) butanoic acid [1] [1] [1] CH_3 - CH_2 - $COOH / <math>C_4H_8O_2 / C_3H_7COOH / <math>C_4H_7OOH$ C_2H_4O mark ecf to molecular formula